Some Baire spaces for which Blumberg’s theorem does not hold
نویسندگان
چکیده
منابع مشابه
Parikh's Theorem Does Not Hold for Multiplicities
We consider the question of whether the famous Parikh's theorem holds with multiplicities i.e., for formal power series instead of languages. We introduce two families of semilinear formal power series over a commutative product monoid. The strict hierarchy of algebraic, rational, recognizable and semi-linear formal power series is proved and in this way it is established that the Parikh's theo...
متن کاملThe Specker-Blatter theorem does not hold for quaternary relations
Let C be a class of relational structures. We denote by fC(n) the number of structures in C over the labeled set {0, . . . , n − 1}. For any C definable in monadic second order logic with unary and binary relation symbols only, E. Specker and C. Blatter showed that for every m ∈ N, the function fC satisfies a linear recurrence relation modulo m, and hence it is ultimately periodic modulo m. The...
متن کاملStrong convergence theorem for solving split equality fixed point problem which does not involve the prior knowledge of operator norms
Our contribution in this paper is to propose an iterative algorithm which does not require prior knowledge of operator norm and prove a strong convergence theorem for approximating a solution of split equality fixed point problem for quasi-nonexpansive mappings in a real Hilbert space. So many have used algorithms involving the operator norm for solving split equality fixed point problem, ...
متن کاملCases where the Penrose limit theorem does not hold
Penrose's limit theorem (PLT, really a conjecture) states that the relative power measure of two voters tends asymptotically to their relative voting weight (number of votes). This property approximately holds in most of real life and in randomly generated WVGs for various measures of voting power. Lindner and Machover prove it for some special cases; amongst others they give a condition for th...
متن کاملBaire spaces, k-spaces, and some properly hereditary properties
A topological property is properly hereditary property if whenever every proper subspace has the property, the whole space has the property. In this note, we will study some topological properties that are preserved by proper subspaces; in fact, we will study the following topological properties: Baire spaces, second category, sequentially compact, hemicompact, δ-normal, and spaces having dispe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1975
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1975-0410691-2